на главную
История#Предосторожности под водойЗдоровье и безопасностьСловарь

Редуктор

На главную
Снаряжение
Виды погружений
Сертификация PADI
Жизнь под водой
Полезности
О дайвинге "СЕРЬЁЗНО"
Фото

РЕДУКТОР

Редуктор - необходимая составная часть регулятора для обеспечения правильной работы легочного автомата во время дайвинга.

Основная задача редуктора - уменьшить давление воздуха, выходящего из баллонов, до давления, превышающего давление окружающей среды на некоторую величину, в пределах 5-10 атм. (как правило, 8 - 9).

Базовые принципы работы различных моделей редукторов мало отличаются друг от друга. Рассмотрим наиболее простую конструкцию редуктора, имеющего три камеры, подвижный поршень и пружину. Форма подвижного поршня такова, что его торцевые поверхности имеют различную площадь. Поверхность меньшей площади снабжена прокладкой из полимерного материала и при опускании поршня вниз закрывает собой отверстие, через которое поступает воздух из баллона. Эта поверхность именуется подушкой клапана, а закрываемое ею отверстие - седлом клапана. Вместе они образуют клапан редуктора. Поверхность большей площади обращена в верхнюю камеру редуктора. Внутри поршня проходит канал, соединяющий нижнюю и верхние камеры редуктора. Средняя камера сообщается отверстием с окружающей средой. Пока баллонный вентиль закрыт, пружина удерживает поршень в верхнем положении, при котором клапан редуктора открыт. При открывании вентиля воздух под высоким давлением устремляется через открытый клапан в нижнюю камеру редуктора, из которой по каналу в поршне проходит в верхнюю камеру. Давление в обеих камерах нарастает практически одновременно. Давление в верхней камере начинает действовать на поршень с возрастающей силой.

Сила давления воздуха на верхнюю поверхность поршня во столько же раз превышает силу, оказываемую таким же давлением на нижнюю его поверхность поршня, во сколько площадь верхней поверхности превышает площадь нижней. Таким образом, указанные силы, действующие на поршень с двух сторон, уравниваются, когда давление в верхней камере значительно уступает давлению на подушку клапана. Снизу на поршень действуют еще две силы: упругости пружины и давления окружающего воздуха или воды. Давление воздуха в нижней и верхней камере редуктора продолжает расти до тех пор, пока увеличивающаяся сила давления воздуха на поршень в верхней камере (сверху вниз) не превысит сумму трех сил, действующих в обратном направлении: давления воздуха на подушку клапана, давления окружающей среды и упругости пружины. Далее происходит закрытие клапана редуктора. В большинстве систем площади поверхностей поршня и упругость пружины подобраны таким образом, что при рабочем давлении в баллонах полное закрытие клапана редуктора происходит при давлении в верхней камере, на 8 - 9 атм. превышающем давление окружающей среды. Это давление называется промежуточным. На поверхности оно равно соответственно 9 - 10 атм. Значение промежуточного давления на поверхности называется установочным давлением редуктора. На глубине Юм давление в средней камере редуктора увеличится на 1 атм. и, соответственно, на столько же увеличится давление в верхней камере редуктора, необходимое для закрытия клапана, т.е. промежуточное. Из нижней камеры редуктора имеется выход для подачи воздуха в легочный автомат. При вдохе давление воздуха в нижней и верхней камерах редуктора падает и клапан открывается, перепуская очередную порцию воздуха в редуктор.

Таким образом, последний обеспечивает подачу воздуха под давлением, на 8 - 9 атмосфер превышающим давление окружающей среды. Герметизация камер в описанном редукторе достигается кольцевыми резиновыми прокладками на поршне и в местах подсоединения шлангов высокого и среднего давления.

Мы привели пример классической конструкции редуктора, проверенной более чем тридцатилетней практикой использования. Подобные устройства называются поршневыми несбалансированными редукторами поточного действия. Что это значит и какие еще бывают типы редукторов ?

ПОРШНЕВЫЕ И МЕМБРАННЫЕ РЕДУКТОРЫ
Если подвижной деталью - управляющим элементом - является не поршень, а резиновая мембрана, соединенная со штоком клапана, такие редукторы называются мембранными. Как правило, их устройство более сложно, они содержат больше подвижных деталей. Поршневые редукторы в целом более надежны и просты в техническом обслуживании: замена кольцевых резиновых уплотнителей - операция простая и быстрая. Смена мембраны - работа более сложная. Недостатком поршневого редуктора является подверженность заклиниванию при образовании наледи на трущихся поверхностях поршня и стенки редуктора или при попадании в зазор между ними частичек грязи. Поэтому мембранные редукторы часто используют при погружении в холодной или загрязненной воде. Более подробно этот вопрос разбирается ниже.

Поточные и противоточные редукторы (прямого и обратного действия)
В поточном редукторе клапан открывается в том же направлении, в котором через него идет воздушный поток, в противоточном - в противоположную сторону. Поршневые редукторы за редчайшим исключением всегда имеют поточный механизм, мембранные - противоточный.

СБАЛАНСИРОВАННЫЕ И НЕСБАЛАНСИРОВАННЫЕЕ РЕДУКТОРЫ
В описанном выше поточном поршневом редукторе давление воздуха из баллонов служит одной из сил, открывающей клапан. Естественно, с расходом воздуха в аппарате, высокое давление падает, а значит, падает и промежуточное давление, т.к. все меньших и меньших усилий хватает на закрывание клапана редуктора. Результат - увеличение сопротивления дыхания при уменьшении запаса воздуха. В редукторе с противоточным клапаном наблюдается обратная ситуация - промежуточное давление растет с падением высокого. Возможны разнообразные технические решения, исключающие влияние величины высокого давления на величину промежуточного до тех пор, пока первое превышает второе. Наиболее распространены следующие.
1. Введение дополнительной поверхности поршня. Такое решение, как правило, используется в мембранных редукторах. Вернемся к схеме такового. Высокое давление действует на тарелку клапана в двух направлениях - на открытие и на закрытие клапана. Вторая сила при этом превышает первую, так как развивается за счет давления на большую площадь. Это означает, что чем ниже высокое давление, тем выше должно быть промежуточное, достаточное для закрытия клапана. Изменив форму поршня можно выровнять площади поверхностей, подвергающиеся воздействию высокого давления в сторону открытия и закрытия клапана. Лишняя поверхность при этом выносится в дополнительную камеру, заполненную воздухом среднего давления.
2. Исключение воздействия высокого давления на управляющий элемент редуктора. Как правило, это решение используется в поршневых редукторах. Нижняя камера здесь служит камерой высокого давления, а седло и подушка клапана меняются местами: подушка неподвижно располагается на торцевой стороне камеры высокого давления, а подвижным седлом служит нижняя оконечность поршня. Выход воздуха среднего давления происходит из верхней камеры редуктора. При отсутствии высокого давления пружина удерживает поршень в верхнем положении - клапан открыт. При повышении давления в нижней камере воздух проходит сквозь канал в поршне в верхнюю и по достижении в последней установочного давления клапан закрывается. Таким образом, полностью исключается воздействие высокого давления на работу поршня. В данном случае весь поток воздуха проходит через канал в поршне, поэтому для обеспечения нормальной пропускной способности редуктора диаметр канала должен быть больше, чем в конструкции.

РАСХОД ВОЗДУХА
Расход воздуха - величина, характеризующая пропускную способность редуктора. Расход воздуха измеряется количеством воздуха в литрах, который способен пропустить через себя редуктор за одну минуту при постоянно открытом клапане. Эта величина во много раз превосходит реальный расход воздуха при погружении и характеризует возможную скорость прохождения воздуха через редуктор, которая должна превышать максимальную скорость потока воздуха, потребляемого легкими подводника при глубоком и резком вдохе. В противном случае в момент наиболее активного дыхательного движения возрастает сопротивление дыханию. Большинство современных редукторов имеют расход воздуха от 1 до 4 тыс. л/ мин.

СПОСОБЫ ПОДСОЕДИНЕНИЯ РЕДУКТОРОВ К БАЛЛОНАМ
Способы подсоединения редукторов к баллонным блокам подробно разобраны при описании последних. Большинство современных зарубежных производителей выпускают каждую модель редуктора как в YOKE, так и в DIN вариантах, причем они совместимы. Как правило, узел крепления к баллону вкручен в редуктор с помощью стандартной резьбы, так что Вы можете вывинтить из редуктора струбцину (YOKE) и вкрутить на ее место адаптер варианта DIN и наоборот. Впрочем, лучше не делать этого самостоятельно, а обратиться к квалифицированным специалистам. Так или иначе, приобретая редуктор одного стандарта и адаптер другого, Вы можете пользоваться любым из них по своему усмотрению. Некоторые отечественные редукторы имеют свой стандарт присоединения к баллонам. При необходимости возможно использование дополнительных переходников с баллонов международных стандартов на наши редукторы и наоборот, но подобные переходники увеличивают количество соединений и размеры конструкции. Новейшая разработка отечественной промышленности - аппарат АВМ- 12-1 - имеет международное соединение типа DIN.

ВЫХОДЫ ИЗ РЕДУКТОРА
Выходы из редуктора часто именуются портами. Наиболее распространенными вариантами, отвечающими современным международным требованиям, являются редукторы с 1 - 2 выходами высокого давления и 3 - 4 выходами среднего давления. Большинство мировых производителей соблюдают единые стандарты обозначений и резьб портов. Порты высокого давления маркируются HP (high pressure) и имеют внутреннюю резьбу диаметром 7/16 дюйма. Часто маркировка HP заменяются указанием высокого давления в атмосферах на которое рассчитан редуктор, например, 200 или 300. Наличие одного выхода высокого давления обязательно для современных редукторов и необходимо для подключения выносного - расположенного на гибком шланге - манометра высокого давления. Второй выход высокого давления может предназначаться для независимого подсоединения датчика давления индивидуального компьютера. Выходы среднего давления как правило лишены маркировки и имеют стандартную внутреннюю резьбу 3/8 дюйма (иногда - 1/2 дюйма). Минимальное количество портов среднего давления - три - предназначается для подсоединения:
легочного автомата;
компенсатора плавучести;
запасного легочника или клапана поддува сухого костюма.
Четыре порта среднего давления позволяют подключать запасной легочник и поддув сухого костюма одновременно.

Редукторы комплектуются заглушками к незадействованным портам.

Редуктор нового отечественного аппарата АВМ-12-1 - имеет 4 порта среднего давления международного стандарта - с внутренней резьбой 3/8. Хорошо известные российским подводникам редукторы типа АВМ-5 имеют лишь один выход среднего давления, предназначенный для легочного автомата и имеющий внешнюю резьбу диаметром 18 мм. Выход высокого давления в этом редукторе отсутствует: укомплектованные ими акваланги либо имеют систему предупреждения подводника о скором окончании запаса воздуха в виде резервного механизма, как аппараты АВМ - 5 и АВМ - 7, либо в дополнение к системе резерва снабжены выносным манометром, отходящим прямо от баллонного блока, как в акваланге Подводник-2. Редуктор аппарата Подводник-4 имеет выход высокого давления с внешней резьбой 14 мм и укомплектован выносным манометром. Выход среднего давления в этой модели также единственный. Естественно, до начала свободного поступления в нашу страну снаряжения международных образцов, отечественные подводники-умельцы создали различные варианты дополнительных портов для подключения жилета-компенсатора плавучести. Наиболее удачный вариант - подсоединение к резьбе, в которую должен вкручиваться предохранительный клапан редуктора, специального тройника, имеющего резьбу для подсоединения предохранительного клапана и дополнительную резьбу для выхода среднего давления к компенсатору. Возможен также четверник - с еще одним портом для запасного легочного автомата.

КАК ПРАВИЛЬНО ЗАДЕЙСТВОВАТЬ ПОРТЫ РЕДУКТОРА?
Ответ прост: в стандартном снаряжении шланги к основному и запасному легочному автомату лучше всего располагать справа, а шланги поддува компенсатора и сухого гидрокостюма - слева. Шланг высокого давления на манометр или компьютер подсоединяется, как правило, с левой стороны. Во многих иностранных редукторах есть механизм, позволяющий по вашему желанию выбрать оптимальное направление выходов шлангов среднего давления: та часть корпуса, на которой располагаются порты среднего давления может поворачиваться вокруг своей продольной оси. Такой механизм называется тарельчатым, или карусельным (swivel).

ОБЩАЯ КОМПОНОВКА РЕДУКТОРА
Форма корпуса редукторов разнообразна, но более - менее приближена к цилиндрической, так как внутри любого редуктора имеется либо цилиндрический поршень, либо дисковидная мембрана. Продольная ось корпуса редуктора либо параллельна, либо перпендикулярна оси крепления к аквалангу. В первом случае вся конструкция получается более компактной. Именно так устроены недорогие редукторы, сочетающие простоту и надежность. Такая компоновка позволяет расположить по окружности 4 или 5 выходов воздуха: один порт высокого давления и 3 - 4 порта среднего давления. Большее количество портов неудобно размещать по одной окружности, а удлинение корпуса сделает редуктор опасным для вашего затылка.

Удлинение корпуса редуктора и размещение большего количества выходов возможно при перпендикулярной ориентации корпуса относительно оси крепления к баллонному блоку. В таком случае один или два порта высокого давления размещаются около крепления к баллонам, а 4 - 5 портов среднего давления - на другом конце корпуса. Необходимо добавить, что порты среднего давления могут располагаться на редукторе равномерно, а также со смещением на одну из сторон или попарно. При задействовании четырех равномерно размещенных портов два шланга оказываются направленными под некоторым углом назад от тела пловца. Цепляясь за окружающие предметы, эти порты причиняют лишние хлопоты, особенно при передвижении в пещерах, затопленных помещениях или в зарослях водорослей.

Третий вариант общего исполнения редуктора весьма компактен и, к тому же, позволяет использовать 2 порта высокого давления и 4 среднего. Расположение портов в редукторе такой конструкции весьма удобно - даже при полном задействовании портов все шланги направлены в стороны или под небольшим углом вперед. Подобным образом устроен редуктор отечественного аппарата АВМ -12-1.
Общая компоновка других отечественных редукторов возможна в двух вариантах. В первом случае имеется единственный выход среднего давления, расположенный в основании редуктора напротив предохранительного клапана, во втором - на этом месте помещен выход высокого давления, а выход среднего находится на крышке редуктора.

 
2006г.
Hosted by uCoz